
Structural overview of the
glideinWMS

Igor Sfiligoi
Fermilab

Batavia, IL, USA

Last updated: July 28th, 2008

1.Introduction
GlideinWMS is a general purpose Workload Management System (WMS) developed by CMS

developers in the US, based on previous experience in CDF. It relies heavily on Condor software, with
additional glideinWMS specific code.

GlideinWMS has been deployed in production by CMS at Fermilab and has been extensively used
for single-user analysis by the CMS San Diego group. It is also currently being used in prototype
deployments by MINOS and CDF at Fermilab.

2.Structural overview
GlideinWMS is composed of six logical pieces, as shown in Fig 1.:

• a Condor central manager,

• one or more Condor submit machines,

• a glideinWMS collector,

• one or more VO frontends,

• one or more glidein factories, and finally

• the glideins.

The elements composing a glideinWMS installation can be grouped in two classes:

• The Condor pool elements, represented in green, handle the user jobs.

• The glidein handling elements, represented in cyan, regulate the amount of glideins sent to
the Grid sites.

The two classses are described in separate sections below.

1/11

2.1. The Condor pool
The Condor pool is the core of the glideinWMS, as it handles the user jobs and is effectively the

only part that the users know about.

A glideinWMS Condor pool is effectively a regular Condor pool, where the execution daemon,
called condor_startd, has been submitted as a Grid job instead of being pre-installed by the system
administrators. This little difference has however a strong security impact; since the condor_startd is
running as a regular user, it cannot change the UNIX identity of the user job on its own. However,
condor_startd can use gLExec for this task; if other similar tools become in the future, Condor could
evolve to support those, too.

A Condor pool is defined by its central manager, in particular the condor_collector daemon running
there; it collects the information about all the other daemons in the system. See Fig 2.1. All network
communications between Condor daemons are provided over a secure channel by CEDAR, a Condor
specific mechanism that provides mutual authentication, integrity, and confidentiality. Several
authentication mechanisms are supported, but most glideinWMS Condor pools will use GSI
authentication and will integrity check all the messages. When GSI is used, authorization is based on
the credential DN. Condor supports both explicit lists as well as regular expressions.

The same figure also shows that the user submits his jobs to a local condor_schedd daemon.
Several authentication methods are available, but most systems are configured to accept either
filesystem based authentication or GSI authentication.

Once a job is accepted by condor_schedd, the negotiation cycle can begin. The condor_negotiator
matches the attributes of the user jobs in the condor_schedd queue to the attributes of condor_startd's

2/11

Figure 2.1: Central Manager defines a Condor Pool

condor_schedd

Submit Machine

Submit

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Advertize

Advertize

Figure 1: GlideinWMS schematic overview

Collector

Glide in
factory

Glide in
factory

VO Frontend

VO Frontend

Central
Manager

Submit machine

Grid Site

Glide in

Glide in

Submit machine

Submit machine

running on the worker nodes , as shown in Fig 2.2. Once a match is found, the condor_negotiator
sends a match message to the interested parties.

At this point the condor_schedd spawns a new process, called condor_shadow, owned by the real
user identity. The condor_shadow sends a Claim request to the condor_startd that in turn spawns
another process, called condor_starter. See Fig 2.3b. If using gLExec, the user proxy is delegated
during the Claim request and the condor_starter will be running as the real user identity, as shown in
Fig 2.3a. Different colors indicate different UNIX identities.

At this point, the condor_shadow can send the user job's input sandbox to the condor_starter. Once
received, the user job is spawned and executed. After the job is done, condor_starter sends the output

3/11

Figure 2.2: Central manager matches submit machines to worker nodes

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Match

Match

Figure 2.3a: Submit machine claiming a worker node with gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow
Spawn, using gLExec

condor_starte r

De legate proxy

Claim

Figure 2.3b: Submit machine claiming a worker node without gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

condor_starte r

Claim

Spawn

sandbox back to the condor_shadow, cleans up the working directory, and terminates. See Fig 2.4a. If
the condor_starter cannot clean up for any reason, the condor_startd will do it.

Once the old job is finished, the condor_startd can either accept a new job from the same
condor_schedd, force a new matchmaking cycle or terminate. Typical configuration will keep the
condor_startd accepting claims for a few hours before terminating, as long as new claims arrive
within 20 minutes or so. To minimize the latencies re-matching is usually not requested, but can be
easily enabled.

Obviously, running the condor_starter under the same UNIX identity as the user job is potentially a
security risk. However, the risk is minimal, as the only external action that the condor_starter can
perform is send out the output sandbox; the input sandbox is being pushed to it. Nevertheless, the
Condor team is working on improving this by calling gLExec to spawn the job itself, as shown in
Figures 2.3b and 2.4b.

Please notice that without gLExec in identity switching mode the user job runs under the same
identity as the condor_startd, as shown in Fig 2.4c. This is a very dangerous setup if more that a single
user is using the system; a malicious user could easily compromise condor_startd and start farming
the proxies of other users. This deployment scenario is strongly discouraged for multi-user setups.

4/11

Figure 2.4a: Condor_starter handles the user job

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox

3 -Transfe r output sandbox

User job

2 - Spawn

Figure 2.4b: Future condor_starter setup

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

2 - Spawn, using gLExec

More information about Condor pools can be found in the Condor manual

http://www.cs.wisc.edu/condor/manual/v7.0/

2.2. Glidein handling
A glideinWMS Condor pool relies on glideins to start condor_startd's on Grid worker nodes. The

glidein submission process is handled by three distinct set of processes, as shown in Fig. 3:

• Glidein factories are in charge of submitting the glideins.

• VO frontends regulate the number of glideins to be submitted (by the glidein factories),
based on the number of jobs waiting in the condor_schedd queues.

• A glideinWMS collector is used as a dashboard for message exchange.

As with all other Condor software, CEDAR is used for communication. The typical configuration
will use GSI for authentication and will integrity check all the messages.

Glidein factories advertise the known Grid Computing Elements (CEs), along with any attributes
that they know, or speculate, about them. VO frontends compare the attributes published by the glidein
factories with the attributes present in user jobs, and decide where to send glideins. Glideins will be
sent to all the CEs that match at least one user job.

5/11

Figure 2.4c: Without identity switching, condor_startd exposed to user attacks

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

Spawn

Figure 3: Glidein handling

Collector

Glide in
factory

VO Frontend

Grid Site

Submit machine

Submit machine

1 – Advertise
myse lf

2 – Ge t factory list

3 – Ge t list of
waiting jobs

4 – Request
glide ins

5 – Submit
glide ins

http://www.cs.wisc.edu/condor/manual/v7.0/

The glidein submission logic is based on constant pressure; as long as there are suitable jobs waiting
in queues on the submission machines, a small number (typically up to 100) of glideins will be kept in
the queues of each and every suitable CE. The glidein factories will use Condor-G for actual glidein
submission; the standard Grid mechanisms are thus used for the transport of the glidein payload and
glidein proxy to a worker node. Other mechanisms, like the gLite WMS, could be used but are not
supported in the current implementation.

A glideinWMS glidein is a shell script designed to download, and possibly execute other files, as
shown in Fig 4. These other files are hosted on a Web server, like Apache, usually running on the same
machine as the glidein factory. Standard HTTP protocol is used to download the files, but all files are
integrity checked using sha1sum. Since there is no authentication involved and privacy over the wire is
not possible. HTTP has been chosen over other more secure mechanisms, like HTTPS, because it
allows for caching; a proxy cache, like Squid, will be used if available.

The executables launched before condor_startd are responsible for gathering machine specific
information and create a configuration file for the condor_startd. The basic configuration scripts come
with glideinWMS, but administrators can add their own executables.

More details can be found in the glideinWMS manual:

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc/manual/

2.3. Working in a firewalled world
Condor, and by extension glideinWMS, relies on two way network communications. However,

several Grid sites are either behind a NAT or use a restrictive network firewall. To work in
environments where only outgoing connectivity is available, Condor provides a product called GCB
(Generic Connection Brokering).

With GCB, only a few nodes need to have incoming connectivity: the Condor central manager
and the GCB nodes. All other processes will then use one of the GCB nodes to route their incoming
traffic. The process with no incoming connectivity will establish a long lived TCP connection with
GCB, obtaining a dedicated port number on the GCB machine. This GCB address is then published as
the process' contact point and when a message needs to be sent to it, the message will be sent to GCB.
GCB will then use the existing TCP channel to relay the message to the waiting process. See Fig. 5 for
an example.

6/11

Figure 4: Glidein script overview

1 – startup
script
(w/signature)

Factory Node

Web se rve r

Glide in factory

Worker Node

condor_startd

2* – Download,
ve rify (and exe)

N – Spawn

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc/manual/

Please notice that GCB does not perform any authentication at all; all the requests are honored. The
security of the channel is delegated to the end points, condor_shadow and condor_startd in Fig. 5.

At the time of writing, there is no known way to make Condor work in environments where direct
outgoing connections are not allowed. glideinWMS is thus unable to use such resources.

2.4. Credentials handling
As with all the pilot infrastructures, two kinds of credentials are handled; the pilot credential and

the user credentials.

The pilot credential is held by the glidein factory. There is no explicit proxy renewal in place. The
glidein factory expects a valid proxy to be referenced by the X509_USER_PROXY environment
variable; how the proxy is kept valid at all times is currently out of scope for the glideinWMS and may
change between deployments. This proxy is used both for authentication with the condor_collector and
for submission of the glidein startup script via Condor-G.

When used for submitting glideins, the proxy is transferred to the worker node using standard Grid
tools (Condor-G using pre-WS or WS GRAM). Condor-G supports updates of proxies for Grid jobs,
but it is currently not used. The pilot proxy is used by condor_startd to authenticate with the other
Condor daemons and it is needed for the whole lifetime of the glidein. The validity of the proxy at
startup is used to determine the maximum lifetime of the glidein. This can easily be changed, if one
accepts the risk associated with failed proxy renewals.

The user credentials are handled by the condor_schedd. The user specifies the location of a valid
user proxy and condor_schedd will simply take note of that. The user needs to refresh the proxy for the
lifetime of the job. There are essentially three ways how this can be done:

• Updating the proxy by hand, typing a password every time.

• Uploading the certificate or a long lived proxy into a trusted MyProxy server and use cron to
renew the local proxy. The cron script can either be run by the user or by the local system.

• Using cron with a local certificate without a password, or by embedding the password in
refresh script. While discouraged by the Grid community, some people do this.

7/11

Figure 5: Condor use of GCB to traverse firewalls

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

4 - Claim

2 – Advertise
GCB address

GCB Process

GCB Machine

1 – Establish TCP
connection

3- Match

5 – Claim re layed over
the existing TCP
channe l

Once the job is ready to start, condor_shadow takes the proxy and delegates it to condor_startd (or
condor_starter, depending on configuration). Let me stress that this is the classic GSI delegation and
the credential private key is never transferred over the wire. If the proxy ever gets updated on the
submission machine during the lifetime of the job, the proxy is re-delegated to the condor_starter.

The delegation does not put any limit on the delegated proxy. For security reasons a limited
delegation would be preferable, but this is currently not supported by Condor. The Condor team is
aware of this and will provide limited delegation in one of the future Condor releases.

3.Conclusions
GlideinWMS is a general purpose Workload Management System (WMS) based on the pilot

philosophy. GlideinWMS has been developed with security in mind, but like all pilot-based WMSes it
needs some help from the sites to achieve the desired security goals.

The current implementation requires the presence of gLExec in identity switching mode to safely
handle multiple users within the same instance. This operation mode has been tested on OSG resources
and I have not yet found any security issues with it.

8/11

Appendix

Condor pool figures

9/11

Figure 2.2: Central manager matches submit machines to worker nodes

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Match

Match

Figure 2.3a: Submit machine claiming a worker node with gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow
Spawn, using gLExec

condor_starte r

De legate proxy

Claim

Figure 2.1: Central Manager defines a Condor Pool

condor_schedd

Submit Machine

Submit

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Advertize

Advertize

10/11

Figure 2.4a: Condor_starter handles the user job

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox

3 -Transfe r output sandbox

User job

2 - Spawn

Figure 2.3b: Submit machine claiming a worker node without gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

condor_starte r

Claim

Spawn

Figure 2.4b: Future condor_starter setup

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

2 - Spawn, using gLExec

11/11

Figure 2.4c: Without identity switching, condor_startd exposed to user attacks

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

Spawn

